高频交易

高频交易是金融市场上的闪电般的交易活动,通过先进的算法和极速的计算机网络,在毫秒甚至微秒级别完成买卖决策,追求微小但稳定的利润。这种交易依赖复杂的数学模型,对市场数据进行实时分析并快速做出反应。由于交易速度极快,高频交易能在极短时间内捕捉到市场上的微小变动并从中获利,但也因其高速和大规模的特性,有时可能加大市场的波动性和系统风险。高频交易在现代金融市场中占据重要地位,既是技术进步的产物,也带来了市场监管和风险管理的新挑战。

机器学习应用在市场微观结构和高频交易的思考

核心观点

短期涨跌的预测相比长期更容易,但覆盖交易成本后再获利的难度更大。所以在高频交易场景,机器学习更适合有限状态下的订单执行。而对于长期的预测,机器学习的训练目标可以不是评估在给定状态下的每股总利润或买入行为的回报,而是监控在该状态下买入与在所有可能状态下买入的相对盈利能力。

Michael Kearns在2010年的关于讨论机器学习在高频交易应用的论文中,提出了很多机器学习应用与高频交易的限制,很多思考放到现在都值得我们去学习。机器学习在高频交易中主要有两个方向,一是订单的执行优化,二是高频涨跌方向的预测。这两者本质的区别是执行优化是在一个确定性的空间寻找最优解,即交易

更新时间:2024-06-12 05:53

10大统计技术

无论你如何看待数据科学这门学科,都不能轻易忽视数据的重要性,以及我们分析、组织和理解数据的能力。Glassdoor 网站收集了大量的雇主和员工的反馈数据,发现在美国“25个最好的工作职位清单”中排名第一的是数据科学家。尽管排名摆在那里,但毫无疑问,数据科学家们研究的具体工作内容仍会不断增加。随着机器学习等技术变得越来越普遍,像深度学习这样的新兴领域获得了来自研究人员、工程师以及各大公司更多的关注,数据科学家会继续站在创新浪潮之巅并且推动技术的不断发展。

尽管拥有强大的编码能力非常重要,但数据科学也并非全部都是关于软件工程的(事实上,能够熟练掌握python已经足够很好的开展工作了)。数据科学

更新时间:2024-06-12 05:51

量化投资

导语

1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或者应该如何切入投资管理领域。

和被动组合管理(passive porfolio management)相比,主动组合管理(active porfolio management)更显投资水平的能力,或者说运气。被动投资力求完全复制相应的基准成分股及其权重,所以每当某指数做成分股的调整时,新入选的股票

更新时间:2024-06-12 02:56

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

AI量化交易常识

分享一些量化交易相关的常识信息。

五因子模型公式及应用

五因子模型是哪五个因子

**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke

更新时间:2024-06-07 10:48

揭开雪球期权的博弈局 凌瓴&无鱼 2022/05

摘要

雪球的投资本质

①投资人与券商充当的角色

{w:100}{w:100}{w:100}

②投资人与券商是否对立

这是投顾经常被问到的问题。销售机构在推荐雪球产品时,必定会讲到交易对手方是券商,一些投资人会简单理解自己在和券商做博弈。我自己在第一次接触雪球时也有这样的误解:如果雪球产品跌破敲入价格,保本保息机制就消失了,所以作为对手方的券商特别有动力想股票下跌,这样就不用支付利息了。路演里刘博士很清晰的描述了券商与投资

更新时间:2024-06-07 10:33

听海外高频交易专家讲解美国的高频交易-海通证券-20190611

摘要

高频交易在美国证券市场中的角色

如果把正在正常交易、买卖力量均衡的市场比喻成一个平静的水面,此时,某个基本面交易员下了一个数量较大的订单,这好比往水中投入了一块石头。那么,不论是订单自身的价格推动力,还是其他投资者做出的反应,都会使市场产生一系列波动,一如水面泛起的层层涟漪。而高频交易则藏匿于其中,于市场的起伏之中寻找获利的机会。

在美国,上市和交易业务是完全分离的

所有的上市证券均可以在任何一家交易所交易。对高频交易商而言,这种碎片化的交易模式提供了很大的获利机会。试想,同一个证券很有可能因为市场流动性或是参与者结构的差异,甚至只是信息传递存在时滞,在不同

更新时间:2024-05-23 06:11

策略中调用其他因子_AI

策略案例

https://bigquant.com/experimentshare/5cfd9186208047518a995e4394ba1099

\

更新时间:2024-05-21 08:15

高频回测模块择时策略

8月19日Meetup策略模板:

https://bigquant.com/experimentshare/a6bae485ffcc47819510b788ddfad338

\

更新时间:2024-05-21 06:30

DeepAlpha短周期因子研究系列之:DNN在量化选股中的应用


\

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

更新时间:2024-05-20 10:54

强化学习在金融市场中的应用(上)

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

[https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7c588b8d](https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7

更新时间:2024-05-20 06:33

早盘买卖

策略案例


https://bigquant.com/experimentshare/3f0d164525984abca02f3e0f58155a00

\

更新时间:2024-05-20 06:15

Python基础入门


\

更新时间:2024-05-20 02:30

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2024-05-20 02:09

神经网络交易算法

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

策略案例

https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b

\

更新时间:2024-05-20 01:02

AI选股策略_概念过滤

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:50

分钟数据获取

策略案例

AIStudio3.0.0分钟数据获取请转移至:

https://bigquant.com/wiki/doc/5yig6zkf5pww5o2u6i635yw-6fK4a8ZOZx

[https://bigquant.com/experimentshare/893162aea1dc4c4f953f670293646709](https://bigquant.com/experimentshare/893162aea1dc4c4f953f6

更新时间:2024-05-17 01:13

如何结合欧奈尔的RPS指标,开发AI量化策略?

若想在AIStudio3.0.0种复现这个策略, 请空降:

https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq

问题

如何结合欧奈尔的RPS指标,开发AI量化策略?

讲解


{w:100}{w:100}{w:100}{w:100}{w:100}


1988年,欧奈尔将他的投资

更新时间:2024-05-17 01:13

筹码理论的探索-筹码分布计算的实现

新版请移至, 新的链接

https://bigquant.com/codesharev2/dd736102-e54b-4d0b-b549-16bd7703a7ac

\

更新时间:2024-05-16 06:36

代码策略

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/stockranker-qFD1Xg1Wz3


代码策略

[https://bigquant.com/experimentshare/23b8dad5c75e4e399bb937d498dccb8f](https://bigquant.com/experimentshare/23b8dad5c75e4e399bb937d498dcc

更新时间:2024-05-16 06:36

【历史文档】高阶应用技巧

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 03:23

【历史文档】策略示例-基金智能策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 02:32

【历史文档】策略示例-基金策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 02:29

【历史文档】策略示例-均线突破策略-Tick

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 02:13

【历史文档】策略示例-基于订单流的高频择时交易策略

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 10:40

分页第1页第2页第3页第4页第5页第6页
{link}